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The S-matrix asymptotic behaviour in the case of singular 
potentials at high complex energies 
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Institute of Nuclear Physics, Moscow State University, Moscow 11 7234, USSR 
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Abstract. The asymptotic behaviour of the S-matrix in the case of repulsive singular 
potential at the origin for large Ikl is presented in a more precise form. I t  is shown that 
the W K B  method in the 'Langer' form yields explicit values of the first- and second-order 
terms of the S-matrix expansion. 

Let us consider the S-wave Schrodinger equation 

(p"+[k2- V( r ) ]p=O 

for a repulsive singular potential of the kind 

V(r)=gr-"+hr-P+ u ( r )  

where 

lim V(r ) r"=g>O 
r - 0  

and 

U ( r ) r 2  + 0; 2 <&(m 1 2 )  < p < m. 

There are a great number of works devoted to the definition of the S-matrix high-energy 
limit. Though it is generally recognised that the corresponding S-matrix has the form 

r - 0  

S (  k )  = exp{ -2i[~~gl"kl-(~")+ 4r + o( I)]} (3)  
the values of a , ,  obtained by various methods (the variable phase method (Cologero 
1964, 1967), WKB method (Limic 1962, Bertocchi et a1 1965, Paliov and Rosendorff 
1967) and the method integral equations (Jaffur 1967)) differ as was pointed out in 
the review by Frank et a1 (1971). 

After the publication of this review much attention was paid in a number of articles 
to the potential 

V( r )  = gr-" + 1( I + I ) /  r2. 

The special case m = 4 is exactly solvable and physically meaningful, it is used when 
the interaction of a charged particle with polarised matter is treated. We would like 
to draw attention to some papers on this problem: the solution of the scattering problem 
for singular potential (Rafe-Beketov and Kristov 197 1);  numerical results of phase 
shifts (Dolinsky 1974); the asymptotic behaviour of the S-matrix and the bound state 
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energies for attractive singular potential (Adamen and Puzek 1979); the rigorous proof 
of the u I  value (Froman and Thylive 1979), which coincides exactly with that of 
Bertocchi et a1 (1965) and Paliov and Rosendorff (1967). 

Interest in the S-matrix behaviour as Ikl+ 00 and 8 = arg k = constant # 0 for the 
potentials which have the analytic S-matrix was stimulated by the problem of the 
validity of the dispersion relation. We recall now that the results of Limic (1962): 

and Jaffur (1967), Aly et a1 (1967) 

~ ( k )  - e~p(-2ia,g '"k'- '~ '" ' )  ( 5 )  
, k J - n  

are not in agreement. Details are given in the review by Frank et a1 (1971). Notice 
that the asymptotics given by Bertocchi et a1 (1965) are wrong because the condition 

S:(-k*)S,'(k) - 1 (6) 
lkl+= 

is violated, which follows from the unitarity of the S-matrix: 

S*( -k*) = S( k). 

To clarify this discrepancy we consider only the problem of the S-matrix behaviour 
at large k. Using the WKB method it can be shown that (4) is true if a,  is not a constant 
but a function of 8. 

Consider a finite potential although the result is the same for any potential which 
decreases faster than the exponent 

(7) 

Then the Jost solutionf(k, r) exists. It is a complete function provided that the variable 
r is fixed. Define the regular solution with the condition 

Its existence is proved in Limic (1962). Following the Poincart theorem one can find 
that both the Jost solution and the Jost function, determined in terms of the Wronskion 

f ( k )  = W{f(k, r), cp(k, r)), 

P(k, r) = (1/2ik){f(-k)f(k, r )  -f(k)f(-k,  r ) )  

constitute the complete function. In the case of a finite potential the equation 

(9) 

is valid in the complex k-plane besides the origin k = 0. Define the asymptotic behaviour 
of the regular and Jost solutions as Ikl+ 00 and 0 < 0 < T. With that end in view make 
use of the WKB approximation for the regular solution 
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where 

p ( k ,  r ) =  [:[(v(t)-k2)1/2-(V(r))1/2]dt 

and V(r,) = k 2 ,  here we mean the positive imaginary branch of the square root, i.e. 
k = ip, p > 0. This formula is true for pure imaginary k as well as for complex values 
(Im k > 0) .  We now are concerned with the first two order terms of the expansion 

I' 

~ ( k ,  r 1 - j  (V / t ) ) ' "d t  

= r r 0  [( V( t )  - k Z ) ' l 2  - ( V( t ) ) ' " ]  d t  + [ [( V( t )  - k2) ' / '+ ik] d t  
J o  J '0 

- ik( r - ro)  - ( V( t ) ) ' "  dt. I, 
The first integral can be written in the form: 

where 

@ ( e ) = ( l / m )  Im [(5-e2'e)1/Z-J~]-15-[1+i'/"'1d5. 
I  

The second integral is: 

[( V( t )  - k2)1'z+ik] d t  - -ig'/"a( 8)klkl-2'", 
/kl+m 

o<e<Ti 

where 

a(  0 )  = 1 + ( l / m )  [ l  - ( 1  -e-21e[)"2]51-i''m) d5, 

and the third integral is: 

Substituting these formulae into ( 1  1) and ( 1  1 )  into ( lo) ,  we obtain 

p(k, r )  - exp{-ikr+ia( e)klkl-2'"g'/" - g""[%( e)  + 2 / (  m -2)]lkl'-(2/"')}. (12) 

Using (12 )  and (9) we have 

PI+= 
o<e<?r 
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where 

c ( e ) = e x p [ i ( t T + e ) ] a ( e ) +  %'(e)+2/(m-2). 

This result coincides with that of Rafe-Beketov and Khristov (1971) if 0 = 0. Consider 
now the asymptotic behaviour of the S-matrix in the case of the potentials sum given 
by ( l ) ,  where U (  r )  involves the centrifugal barrier term as well. 

It follows from ( 1 )  and  the conditions of theorem (2.6.1) of Rafe-Beketov and  
Khristov (1971) that 

r i  
& ( k )  - - k +  J ( k 2 - g t - " - h t - P ) " 2 d t + ( I + ~ ) & r + o ( l )  

r d k )  k - x  

Here ro(k) is the turning point, i.e. the point where the integrand becomes zero. 
Obviously at large k just one turning point exists. One can easily obtain the expansion 

Transforming the integral term in (12) by expanding the integrand in powers: 

( k2 - gt-" - htCP)Ii2 d t  

1 - m n + ( m - P ) s + l  - ro 
X 
- mn + ( m  - p ) s  + 1' 

Substituting this into (12) and taking into account (13) we get: 

where 
X 

a , = a ( O ) =  1 -  1 ( - l ) n  - 
n = l  (i) mnl- 1 

1 "  n 
m m n - ( m - a ) - l  

It can be seen from (14) that if  CY < ;( m + 2) the second order term of the expansion 
equals ( I  + t )  7 /2 .  

Appendix 

In the Appendix we prove formula ( 10) for 1 kl-+ CO, 0 < e = arg k < 7. Let us start from 
the equation 

y " -  [- k2 + gr-"' + Q( r, k)]y = [U( r )  - Q( r, k)]y ('41) 
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where 

0 r < l  
-gr-" r a  1. 

U ( r )  5 

This equation coincides with equation ( 2 ) ,  provided the potential is taken in the form 
(7) .  The functions 

are independent solutions of the equation (AI )  with the RHS equal to zero ( k  = ip, p > 0). 
It is easy to see that 

x d k ,  r )xT' (O,  r )  = 1 lim e P ( k l )  

r-+O 
W X l ,  X d  = 1, 

where 
f i r  

p ( k ,  r )  = J ' ( (gt-"  - k 2 ) 1 ' 2 - ( g t C " ) ' / 2 )  dt. 
0 

Hence the function 

4 ( k ,  r )  = q ( k ,  r )  e ~ ~ ' ( ~ . ' ' / x ~ ( k ,  r )  

is a solution of the integral equation 

R ( k ,  r, t ) 4 ( k ,  t )  d t  

where 

The quantity gt-" - k 2  takes the complex values at 0 < e < T and 0 < t < cc except the 
negative ones and zero. So we may choose the branch of (g t -"  - k2)"' with positive 
real part, i.e. at e =+T. Consequently 

Obviously F (  k, t )  E L(0,  a )  for a > 0 and 
f a  
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Now we use the following lemma (Titchmarsh 1946). 

The equation 

possesses a single solution and 

From (A2) and (A3) we get 

O<@<CG 

This convergence is uniform with respect to x E [0, a ] .  Hence 

p ( x ,  k )  = x,( k, x )  e''('')[ 1 + o( I)]. 
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